
Calculates sample size for a random sampling inventory
silv_sample_size.Rd
Calculates sample size for a random sampling inventory
Usage
silv_sample_size(
x,
plot_size = 100,
total_area = 150000,
max_error = 0.05,
conf_level = 0.95,
max_iter = 1000,
quiet = FALSE
)
Arguments
- x
vector of field survey
- plot_size
a numeric vector of length one with plot size in squared meters
- total_area
total area of the study area in squared meters
- max_error
maximum allowed error
- conf_level
confidence level
- max_iter
maximum number of iteration to find the plot size
- quiet
if
TRUE
, messages will be supressed
Examples
## pilot inventory measuring 4 plots of 25x25 meters
## total forest area 15 ha
## measured variable (x): basal area per hectare
silv_sample_size(
x = c(33, 37.5, 42, 35.2),
plot_size = 25 * 25, # squared plot of 25x25
total_area = 15 * 1e4, # 15 ha
max_error = 0.05,
conf_level = 0.95,
max_iter = 100
)
#> ℹ A total of 4 plots were measured in the pilot inventory, each plot measuring 625 squared meters.
#> ℹ A minimum of 18 inventory plots are needed for a maximum sampling error of 5% (95% CI [35.08, 38.77]).
#> ℹ The sampling effort will be 1.2 plots/ha
#> ℹ Note that these calculations assume that you will do a simple random sampling
#> <silviculture::SampleSize>
#> @ sampling_res :List of 4
#> .. $ min_plots : num 18
#> .. $ ci_lo : num 35.1
#> .. $ ci_up : num 38.8
#> .. $ sampling_effort: num 1.2
#> @ sampling_opts:List of 5
#> .. $ pilot_plots: num [1:4] 33 37.5 42 35.2
#> .. $ plot_size : num 625
#> .. $ total_area : num 150000
#> .. $ max_error : num 0.05
#> .. $ conf_level : num 0.95