
Calculates the dominant diameter
silv_stand_dominant_diameter.Rd
Calculates the dominant diameter using Assman and Friedrich method, or Weise method
Arguments
- diameter
Numeric vector with diameter classes
- ntrees
Optional. Numeric vector with number of trees per hectare. Use this argument when you have aggregated data by diametric classes (see details).
- which
The method to calculate the dominant diameter (see details)
- quiet
if
TRUE
, messages will be supressed
Details
The dominant diameter \(D_0\) is the mean diameter of the 100 thickest trees per
hectare. Therefore, diameter
and ntrees
should be vectors of the same length.
Assman: calculates the \(D_0\) as the mean diameter of the 100 thickest trees per hectare
Weise: calculates the \(D_0\) as the quadratic mean diameter of the 20% thickest trees per hectare
Examples
## calculate d0 for inventory data grouped by plot_id and species
library(dplyr)
inventory_samples |>
mutate(dclass = silv_tree_dclass(diameter)) |>
summarise(
height = mean(height, na.rm = TRUE),
ntrees = n(),
.by = c(plot_id, species, dclass)
) |>
mutate(
ntrees_ha = silv_density_ntrees_ha(ntrees, plot_size = 10),
d0 = silv_stand_dominant_diameter(dclass, ntrees_ha),
.by = c(plot_id, species)
)
#> # A tibble: 57 × 7
#> plot_id species dclass height ntrees ntrees_ha d0
#> <int> <int> <dbl> <dbl> <int> <dbl> <dbl>
#> 1 7 27 50 18 3 95.5 79.1
#> 2 7 27 55 17.6 5 159. 79.1
#> 3 7 27 35 16.5 1 31.8 79.1
#> 4 7 27 45 14.6 2 63.7 79.1
#> 5 7 27 60 19.1 3 95.5 79.1
#> 6 7 27 25 12.9 1 31.8 79.1
#> 7 7 27 120 20.9 1 31.8 79.1
#> 8 8 83 20 5.10 3 95.5 19.5
#> 9 8 83 10 6.10 4 127. 19.5
#> 10 8 28 55 15.5 1 31.8 57.5
#> # ℹ 47 more rows